The SPRING Study: Severe acute respiratory syndrome-related coronavirus 2 prevalence in children and young adults in British Columbia: an observational study

Sarah Silverberg, Hennady Shulha, Bahaa Abu-Raya, Sofia Bartlett, Julie Bettinger, Adriana Cabrera, Daniel Coombs, Soren Gantt, Vivek Gill, David Goldfarb, Helen He, Agatha Jassem, Mel Krajden, Muhammad Morshed, Laura Sauvé, Inna Sekirov, Danuta Skowronska, Manish Sadarangani

Introduction

- Pediatric COVID-19 cases are generally less severe than in adults with a varying proportion considered asymptomatic
- Differences in clinical presentation complicate estimates of disease burden by age based solely on reported surveillance data

This study aims to:
1) Estimate age- and sex-specific prevalence of SARS-CoV-2 infection in children and young adults <25 years of age in BC based on presence of serum anti-SARS-CoV-2 IgG antibodies
2) Define asymptomatic and symptomatic infection rates to support predictive modelling in BC and Canada

Methods

- Electronic survey conducted using REDCap
- Mailed a kit to provide a self-collected finger or heel prick dried blood spot sample
- Assays conducted at the provincial reference laboratory at the BCCDC

Inclusion Criteria:
- Parent/guardian/participant willing and able to give informed consent and/or assent
- Age <25 years
- Resident in BC
- Phase 2: Unvaccinated kids ages 0-9; vaccinated youth ages 12-24

Exclusion Criteria: none specific

Demographics

Phase 1
- 2535 participants enrolled; 2129 samples sufficient to analyse
- Gender: Female 56.5%; Male 43.5%
- 83% had no underlying health conditions
- Ethnicity: white 84%, Chinese 4%, South Asian 3%, Mixed 14%, Unknown 17%
- Geographic distribution: VCHA 33.7%, Fraser 26.3%, Interior 6.2%, Northern 2.3%, Island 8.8%

Phase 2
- 2040 participants enrolled
- Analysed 933 participants ages 0-9yo

Seropositivity

Phase 1
- 4.4% of participants were seropositive
- Higher seropositivity in young adults 20-24yo (Table 1)

Phase 2
- Overall, 6.29% of participants <10yo were seropositive
- In comparison: BCCDC data from April 3, 2021, showed approx. 1% of children under 10yo were seropositive (Table 2)

Phase 1 Exposure Sources

- 89% of participants reported no known COVID-19 exposures

Methods

Table 1: Seroprevalence by age

<table>
<thead>
<tr>
<th>Age</th>
<th>Phase 1 Seroprevalence (95% CI)</th>
<th>Phase 2 Seroprevalence (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 4</td>
<td>3.17% (1.78, 5.59)</td>
<td>7.65% (4.52, 12.64)</td>
</tr>
<tr>
<td>5 - 9</td>
<td>4.09% (2.57, 6.45)</td>
<td>5.72% (3.84, 8.44)</td>
</tr>
<tr>
<td>10 - 14</td>
<td>3.24% (1.97, 5.28)</td>
<td>-</td>
</tr>
<tr>
<td>15 - 19</td>
<td>3.84% (2.44, 5.98)</td>
<td>-</td>
</tr>
<tr>
<td>20 - 24</td>
<td>7.22% (5.21, 9.92)</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 2: Comparison of study and BCCDC data

<table>
<thead>
<tr>
<th>SPRING:</th>
<th>Phase 1</th>
<th>Phase 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seroprevalence (95% CI)</td>
<td>Seroprevalence (95% CI)</td>
<td></td>
</tr>
<tr>
<td>5-9yo</td>
<td>4.09% (2.57, 6.45)</td>
<td>6.29% (4.58, 8.59)</td>
</tr>
<tr>
<td>BCCDC (Apr 3, 2021): <10yo</td>
<td>1.0%</td>
<td>6.2%</td>
</tr>
</tbody>
</table>

Table 3: Seroprevalence by health authority

<table>
<thead>
<tr>
<th>Health Authority</th>
<th>Phase 1 Seroprevalence (95% CI)</th>
<th>Phase 2 Seroprevalence (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FHA</td>
<td>5.85% (4.2, 8.1)</td>
<td>7.78 (4.6, 12.86)</td>
</tr>
<tr>
<td>IHA</td>
<td>2.92% (1.14, 7.27)</td>
<td>4.44 (1.23, 14.83)</td>
</tr>
<tr>
<td>NHA</td>
<td>1.96% (0.35, 10.3)</td>
<td>7.14 (1.27, 31.47)</td>
</tr>
<tr>
<td>Unknown</td>
<td>3.55% (2.23, 5.61)</td>
<td>7.36 (4.26, 12.43)</td>
</tr>
<tr>
<td>VCHA</td>
<td>4.22% (2.99, 5.92)</td>
<td>4.17 (1.92, 8.79)</td>
</tr>
<tr>
<td>VIHA</td>
<td>4.5% (2.39, 8.33)</td>
<td>5.13 (1.42, 16.89)</td>
</tr>
</tbody>
</table>

Discussion

- Higher seropositivity in study data compared to provincially reported data
- High seropositivity amongst young adults, certain ethnicities in Phase 1 compared to other age groups

Limitations

- Sample is disproportionately white; numbers in some ethnic groups are relatively small
- May have unintended selection bias in who volunteered to participate in the study
- Over-representation of VCHA and FHA (69-78% of participants vs. 63% of BC population)
- Children & youth living in the north and identifying as Indigenous not adequately represented in cohort

Acronyms

• BCCDC: British Columbia Centre for Disease Control
• FHA: Fraser Health Authority
• IHA: Interior Health Authority
• NHA: Northern Health Authority
• VCHA: Vancouver Coastal Health Authority
• VIHA: Vancouver Island Health Authority

Figure 1: Exposure Sources (if known)

Figure 2: Distribution of participants by phase and age category

Figure 3: Distribution of participants by phase and ethnicity

Figure 4: Comparing seroprevalence across health authorities

Figure 5: Comparison of seroprevalence by age and phase

Figure 6: Comparison of seroprevalence by gender and phase

Figure 7: Comparison of seroprevalence by ethnicity and phase

Figure 8: Comparison of seroprevalence by travel history and phase

Figure 9: Comparison of seroprevalence by underlying health conditions and phase

Figure 10: Comparison of seroprevalence by exposure status and phase

Figure 11: Comparison of seroprevalence by antibody status and phase

Table 1: Seroprevalence by age

<table>
<thead>
<tr>
<th>Age</th>
<th>Phase 1 Seroprevalence (95% CI)</th>
<th>Phase 2 Seroprevalence (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 4</td>
<td>3.17% (1.78, 5.59)</td>
<td>7.65% (4.52, 12.64)</td>
</tr>
<tr>
<td>5 - 9</td>
<td>4.09% (2.57, 6.45)</td>
<td>5.72% (3.84, 8.44)</td>
</tr>
<tr>
<td>10 - 14</td>
<td>3.24% (1.97, 5.28)</td>
<td>-</td>
</tr>
<tr>
<td>15 - 19</td>
<td>3.84% (2.44, 5.98)</td>
<td>-</td>
</tr>
<tr>
<td>20 - 24</td>
<td>7.22% (5.21, 9.92)</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 2: Comparison of study and BCCDC data

<table>
<thead>
<tr>
<th>SPRING:</th>
<th>Phase 1</th>
<th>Phase 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seroprevalence (95% CI)</td>
<td>Seroprevalence (95% CI)</td>
<td></td>
</tr>
<tr>
<td>5-9yo</td>
<td>4.09% (2.57, 6.45)</td>
<td>6.29% (4.58, 8.59)</td>
</tr>
<tr>
<td>BCCDC (Apr 3, 2021): <10yo</td>
<td>1.0%</td>
<td>6.2%</td>
</tr>
</tbody>
</table>

Table 3: Seroprevalence by health authority

<table>
<thead>
<tr>
<th>Health Authority</th>
<th>Phase 1 Seroprevalence (95% CI)</th>
<th>Phase 2 Seroprevalence (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FHA</td>
<td>5.85% (4.2, 8.1)</td>
<td>7.78 (4.6, 12.86)</td>
</tr>
<tr>
<td>IHA</td>
<td>2.92% (1.14, 7.27)</td>
<td>4.44 (1.23, 14.83)</td>
</tr>
<tr>
<td>NHA</td>
<td>1.96% (0.35, 10.3)</td>
<td>7.14 (1.27, 31.47)</td>
</tr>
<tr>
<td>Unknown</td>
<td>3.55% (2.23, 5.61)</td>
<td>7.36 (4.26, 12.43)</td>
</tr>
<tr>
<td>VCHA</td>
<td>4.22% (2.99, 5.92)</td>
<td>4.17 (1.92, 8.79)</td>
</tr>
<tr>
<td>VIHA</td>
<td>4.5% (2.39, 8.33)</td>
<td>5.13 (1.42, 16.89)</td>
</tr>
</tbody>
</table>